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1 Statement of Problem Studied

A new theory and numerical methods for the mechanical behavior of thin
films were developed. The theory was applied to shape memory and fer-
romagnetic shape memory materials. This suggested several new designs
for microactuators. One of these, a microvalve, was numerically simulated.
It showed a reversible motion induced by temperature change and a nearly
square hysteresis loop (valve opening vs. temperature). In addition, the
deformation and transformation of a thin film by indentation and the dis-
appearance of the indentation by heating and reverse phase transformation
were numerically simulated.

A new scheme was developed for the passage from atomic to continuum
level, applicable to nanoscale films, rods and tubes. - This is being imple-
mented in the context of carbon sheets, in joint work with Peter Chung
of ARL. This implementation will continue at ARL jointly with Dr. Raju
Namburu and Chung.

2 Summary of Most Important Results

Active martensitic thin films are increasingly being utilized in new and pro-
posed technologies. The recent development by Palmstrom and James of
techniques for the growth of single crystal martensitic thin films offers the
promise of even larger work output per cycle. Bhattacharya and James have
derived a thin film model for martensitic thin films from the geometrically
nonlinear bulk theory of martensite. Luskin and his graduate student Pavel




Belik have utilized the Bhattacharya-James model to develop several finite
element models for the deformation of active martensitic thin films.

Bélik and Luskin developed numerical methods and did simulations of an
experiment performed by Cui and James. The goal of the experiment was to
confirm the prediction of the thin film theory that certain martensitic alloys
of specific composition and orientation support the tent deformation. In this
experiment, a thin film of CuAINi with a specific orientation was obtained,
and an indenter in the shape of the predicted tent was used to deform the
film appropriately. Upon removal of the indenter, the film remained in the
tent-like shape in the upright position. A water bath was used to transform
the film back to austenite, and the experiment was repeated several times.

Bélik and Luskin have developed a mathematical and computational
model for the nucleation of the austenitie-martensite phase transformation
and the propagation of the phase boundary as a single crystal thin film was
heated and cooled from the boundary of the film. Our model has enabled
us to begin to simulate the results of the experiment done by J. Cui and R.
James on a thin slice of an alloy of CuAINi.

A model for nucleation is necessary since the film would otherwise remain
in a metastable local minima of the energy and would never transform at
any temperature. We feel that the development of physical and efficient
nucleation algorithms are necessary for the simulation and design of active
materials based on phase transformation.

We have developed a Monte Carlo method that is implemented on each
triangle of our finite element mesh that is based on a Maxwell-Bolzmann
distribution of the states of the austenitic and martensitic phases. Another
important aspect of our method was the development of an algorithm for the
change of the phase of the crystal independently within each finite element
triangle. For the phase change algorithm, it was crucial that we utilized the
total variation surface energy developed earlier for this project.

We have developed a method for the direct passage from atomic to con-
tinuum scale for films. It relies on weak convergence methods to select in a
natural way the continuum variables. The result of this work is a membrane
theory for carbon sheets. For a film of n atomic layers the energy density is
found to depend on (Vu, bs,...,b,-1), where u describes the deformation of
the “middle surface”, and (b1,...,b,—1) describe the relative displacements
of the atomic layers that make up the film. An explicit formula for the en-
ergy is given that can be evaluated by atomic calculations. The approach
is expected to give reliable results, as the entire procedure is justified by
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asymptotic arguments resting on the atomic theory and mild assumptions
about the deformations: the form of the continuum theory is not assumed.
This will allow accurate calculations of the mechanical behavior of atomic
scale films in a regime that are inaccessible to direct atomic simulation.

We are evaluating this energy for a carbon sheet with Peter Chung. We
plan to do calculations on large arbitrarily deformed sheets, and treat de-
fects with a quasi-continuum approach, and build up to the evaluation of
the strength of materials. Chung is at the Army Research Laboratory doing
an NRC postdoctoral fellowship under the direction of Dr. Raju Namburu
(raju@arl.mil, (410) 278-0274). This work is of interest to the Army because
of the potential use of nanoscale carbon nanotubes and sheets as a compo-
nent in high strength composites or in monolithic material made from linked
carbon nanotubes.

For the carbon sheets we first tried classical potentials of Stillinger-Weber
and Tersoff type for carbon, but these were found to be innaccurate, by
comparison to DFT calculations, for distorted states. We have now developed
a suitable DFT method.

We are also currently doing theoretical work to understand the higher
order asymptotics for atomic films; these are expected to deliver the bend-
ing energy at order (1/k)3, where the film is a k x k sheet in its reference
configuration.

James continued work on the behavior of thin films of active materials.
It occurred in previous work that a small scale actuator could be driven by a
certain time—dependent magnetic field. This led to the need for an expression
for the driving force on a magnetoelastic interface. This has been treated in
the literature, but the published expressions are incorrect. James derived the
correct formula, which entailed a rather complete reworking of magnetism
with careful attention to the presence of Dirac masses that arise in formulas
for the force and energy. Using this formula for the driving force, a new theory
was formulated for the behavior of hard magnetic materials with mobile
interfaces (the interesting example: ferromagnetic shape memory materials in
the martensitic phase) called Piecewise Rigid Magneto-Mechanics (PRMM).
This theory is expected to allow us to simulate the dynamic behavior of small
scale actuators. Of particular interest is the scale dependence of various
quantities like natural frequency, gripping force. We have developed a fast
numerical approach to PRMM.
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